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A B S T R A C T   

Neurotoxicology is a specialty that aims to understand and explain the impact of chemicals, xenobiotics and 
physical conditions on nervous system function throughout the life span. Herein, we point to the need for 
integration of novel translational bioinformatics and chemo-informatics approaches, such as machine learning 
(ML) and artificial intelligence (AI) to the discipline. Specifically, we advance the notion that AI and ML will be 
helpful in identifying neurotoxic signatures, provide reliable data in predicting neurotoxicity in the context of 
genetic variability, and improve the understanding of neurotoxic outcomes associated with exposures to mix
tures, to name a few.   

1. Introduction 

The environment is replete with neurotoxins, including metals, sol
vents and pesticides, to name a few (Vermeulen et al., 2020). Neuro
toxicology is a specialty that aims to explain the impact of these 
compounds on the nervous system throughout the life span, whether 
during development, adulthood or senescence. While great strides have 
been made in describing the functional outcomes of these exposures and 
their underlying mechanisms of neurotoxicity, the discipline lags in 
predicting structure-based neurotoxicity, molecular modeling of neu
rotoxins, comparative neurotoxicity, and mixture-induced neurotox
icity. Hence, novel translational bioinformatics and chemo-informatics 
approaches, such as machine learning (ML) and artificial intelligence 
(AI), need to be integrated into neurotoxicology, as depicted in Fig. 1. 

Artificial intelligence (AI) is based on the premise of genuine human- 
to-machine interaction, where a machine is coded to learn to perform a 
task using a set of algorithms (any form of automated instruction). 
Basically, an intelligent machine has the ability to comply with requests, 
connect small or large data points and ultimately provide conclusions. 
AI, in turn, is defined as the broad science of mimicking human abilities, 
while machine learning (ML) is defined as a set of algorithms that is fed 
with structured data in order to complete a task without being pro
grammed how to do so (Haenlein and Kaplan, 2019). 

We challenge the neurotoxicology family to address several specific 
questions, including: Can recent developments in AI and ML be applied 
in neurotoxicology as they are being applied in precision medicine and 
other fields? Are these applications sufficiently robust to identify 
neurotoxic “signatures”? Are they reliable in predicting neurotoxicity in 
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the context of genetic variability? Are they able to predict neurotoxicity 
associated with exposures to mixtures? Can they relate chemical struc
ture or activity to neurotoxicity? 

2. Artificial intelligence in neurotoxicology 

We provide few examples on how these advanced tools can be uti
lized in future research. Acetylcholinesterase (AChE) functions to 
terminate neurotransmission by hydrolyzing acetylcholine. Accord
ingly, AChE inhibitors, such as organophosphates and carbamates, in
crease both the level and duration of the neurotransmitter action. A 
recent study by Pulikkal et al. (2017), taking advantage of novel che
moinformatics tools such as quantitative structure-activity relationship 
(QSAR) models, has identified physicochemical properties of AChE in
hibitors (Pulikkal et al., 2017). Analogous QSAR models should improve 
the understanding on the biological activity of various organophos
phates and carbamates in inhibiting AChE and their neurotoxic sequa
lae, and identify other agents which may target this enzyme. 

In search of novel treatments for Schizophrenia, ML and computa
tional chemistry have also been combined to determine the chemical 
properties of inhibitors of gamma-amino butyric acid (GABA), the pri
mary inhibitory neurotransmitter in the adult central nervous system 
(Marunnan et al., 2017). While known to be affected by lead (Pb), pol
ychlorocycloalkane and pyrethroid insecticides (Bloomquist et al., 
1986), systematic studies predicting physicochemical properties of 
other neurotoxins have yet to take advantage of novel computational 
algorithms, such as AI and ML. 

3. Advancing artificial intelligence (AI) techniques 

Advanced AI techniques (such as feature selection, Machine Learning 
(ML) or/and Deep learning (DL)) have been recently employed for the 
prediction of neurotoxicity and the analysis of neurotoxicity-related 
mechanisms (Furxhi and Murphy, 2020; Jiang et al., 2020; Kuusisto 
et al., 2019; Monzel et al., 2020a), with AI and ML methods having been 
used for the analysis of in vivo, in vitro (Furxhi and Murphy, 2020; 
Monzel et al., 2020a) and in silico (Jiang et al., 2020) neurotoxicity. 

Feature selection (FS) is an AI-based technique identifying the most 
significant and relevant features to the investigated problem. By 
removing redundant or unrelated information, FS increases discrimi
natory and predictive power, contributing significantly to the classifi
cation/prediction model (Chandrashekar and Sahin, 2014). FS is divided 
into filter, embedded selection and ranking methodologies (such as 
mRMR algorithm, Random Forest (RF), Recursive Feature Elimination 
(RFE) (Kuusisto et al., 2019), etc.) (Chandrashekar and Sahin, 2014). 
Machine Learning (ML) is an AI-based data analysis approach, capable 
of automatic identification of data patterns via establishment of 
computational models based on learning skills acquired from a training 
dataset. Several classification systems have been used in the literature 
(such as Naive Bayes (NVB), k-Nearest Neighbors (KNN), Support Vector 

Machines (SVM), artificial Neural networks (ANN), Random Forest (RF), 
etc.), with Random Forest being the most prominent and effective 
(Furxhi and Murphy, 2020; Monzel et al., 2020a) due to its increased 
discriminative power. Furthermore, Deep Learning (DL) is an AI-based 
methodology training neural network models with complex architec
tures and non-linear transformations. DL exhibits high performance with 
the limitations of the need for very large training datasets, and low 
generalizability power (Srivastava and Hanig, 2021). Imaging analysis 
tools provide highly valuable information for the automatic quantifi
cation of neurotoxic states and regions of interest (ROI) (Argyriou et al., 
2019; Fitsanakis et al., 2006) which have been combined efficiently with 
the emerging DL and ML techniques (Falk et al., 2019; Kayasandik et al., 
2020; Srivastava and Hanig, 2021), enabling the address of the auto
mated identification of histopathological results identifying automati
cally neuronal damage or degenerated brain areas (Iqbal et al., 2019). 
The application of AI methods (such as Feature Selection, ML/DL) pro
vide powerful and reliable tools for automating all the phases of 
neurotoxicity estimation procedure: artifacts removal, precise brain 
areas segmentation, detection of degenerated areas, extraction of their 
descriptive features and efficient model classification/prediction with 
increased accuracy [12]. 

4. Enabling the use of high-throughput “omics” technologies 

Large and granular datasets are needed to develop ML models and 
get accurate predictions. Little data results in a poor approximation and 
may cause over-fitting. High-throughput “omics” technologies which 
are increasingly used to measure thousands of variables (e.g. metabolite 
levels, gene expression, or image acquisitions) are thus very suitable to 
develop ML algorithms. They can be used to identify harmful substances. 
Recent studies also include the construction of zebrafish developmental 
neurotoxicity networks by integration of transcriptomic datasets (Li 
et al., 2021), or toxicity predictions in brain organoids from image-based 
cell profiling (Monzel et al., 2020b). They also improve the predict
ability of current testing strategies. For instance, an in-depth molecular 
profiling in rats exposed to pesticides allowed the detection of pertur
bations that would remain undetected by standard regulatory measures 
(Mesnage et al., 2021b) or the effects of glyphosate on gut microbial 
communities (Mesnage et al., 2021a). Omics technologies also have 
applications for precision medicine. For instance, blood lipid profiles 
reflecting antecedent memory impairment can be used as diagnostic 
tools for early neurodegeneration of Alzheimer’s disease (Mapstone 
et al., 2014). Toxicogenomics strategies can even have regulatory 
application by facilitating the development of adverse outcome path
ways and read-across strategies (Liu et al., 2019). 

Altogether, we suggest that the use of omics technologies could 
facilitate the development of AI applications in neurotoxicology by 
providing datasets sufficiently large so that ML models can learn accu
rate prediction profiles. 

Fig. 1. A conceptual framework to leverage artificial intelligence and advance the understanding of chemical neurotoxicity.  
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5. Mixtures toxicity evaluation in the era of computational 
approaches 

New evidence has shown that approaches based on single chemical 
toxicological evaluations for setting safe limits and reference doses are 
not sufficiently protective of human health. In real-life, subjects are not 
exposed to a single chemical, but a multitude of environmental chem
icals through different pathways, making it exceedingly difficult for 
regulatory agencies to reliably determine safety limits to individual 
chemicals solely based on a single compound evaluation (Hernandez 
et al., 2020; Tsatsakis et al., 2017). Studies on non-commercial mixture 
toxicity have shown that exposures at low doses, below the safety 
reference dose for individual chemicals (in the mixture) induce neuro
behavioral changes and/or neurotoxicity (Tsatsakis et al., 2019), 
emphasizing the need for integrated mixture toxicity analyses in the risk 
assessment process. Due to the complexity and multitude of chemical 
mixtures to which a subject might be exposed, classical toxicological 
testing cannot be performed for all the possible combinations, hence in 
silico tools and/or AI should be included in the chemical mixture toxi
cological evaluation to derive reference doses (RfD) and inform on 
combined possible toxic effects. 

In conclusion, future validation of ML and AI outputs with existing 
experimental results, should overcome current limitations in neuro
toxicology, allowing for better understanding at multiple levels, 
increasing predictability of neurotoxicity in the context of genetic 
variability, characterizing modes-of-action of neurotoxins, and 
providing class-specific neurotoxic signatures, to name a few. 
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